4.6 Article

The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 97, Issue 4, Pages 882-892

Publisher

WILEY
DOI: 10.1002/jcb.20645

Keywords

BRD7; bromodomain; nasopharyngeal carcinoma (NPC); acetylated H3

Ask authors/readers for more resources

Studies showed that the bromodomain binds to acetyl-lysines on histone tails, which is involved in deciphering the histone codes. BRD7, a novel bromodomain gene, is the first described bromodomain gene involved in nasopharyngeal carcinoma (NPC). Previous studies showed that ectopic expression of BRD7 inhibited cell growth and cell cycle progression from G1 to S phase in HNE1 cells(a NPC cell line) by transcriptionally regulating some cell cycle related genes including E2F3 gene. In the present study, we revealed the co-localization between acetylated H3 and BRD7 and found that the bromodomain of BRD7 is required for this co-localization. More importantly, wild-type BRD7 interacted with H3 peptide acetylated at Lysl 4, while the bromodomain deleted mutant lost this ability. We also found that the mutant BRD7 failed to regulate E2F3 promoter activity and inhibit cell cycle progression. These results indicated that the transcriptional regulation role of BRD7 was achieved by binding to acetylated histone H3 and that the bromodomain was essential for this role. In addition, no obvious changes were observed in the acetylated level of histone H3 after transfection with BRD7, indicating that chromatin remodeling, not chromatin modification, is the major mechanism of BRD7 mediated gene transcription. Taken together, the present work shed light on the fact that a novel bromodomain gene, BRD7, is of importance in transcriptional regulation and cellular events including cell cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available