4.3 Article

Immunological detection of nitrosative stress-mediated modified Tamm-Horsfall glycoprotein (THP) in calcium oxalate stone formers

Journal

BIOMARKERS
Volume 11, Issue 2, Pages 153-163

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/13547500500421138

Keywords

3-nitrotyrosine; hyperoxaluria; enzyme-linked immunosorbent assay; nitrosative stress

Ask authors/readers for more resources

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in hyperoxaluric condition has been proved experimentally. This may result in the formation of the cytotoxic metabolite peroxynitrite, which is capable of causing lipid peroxiclation and protein modification. The presence of nitrotyrosine in proteins has been associated with several pathological conditions. The present study investigated the presence of nitrotyrosine in the stone formers Tamm-Horsfall glycoprotein (THP). In vitro nitration of control THP was carried out using peroxynitrite. New Zealand white rabbits were immunized with peroxynitrated THP at 15-day intervals. Antisera collected following the third immunization were assayed for antibody titres using solid-phase ELISA. Antibodies were purified by affinity chromatography. The carbonyl content of control, stone formers and nitrated THP were determined. Western blotting was carried with control, stone formers and nitrated THPs. Immunodiffusion studies demonstrated cross-reaction with nitrated bovine serum albumin. Significant amounts (p < 0.001) of carbonyl content were present in both stone formers and nitrated THPs. Western blot analysis confirmed the presence of nitrated amino acid 3-nitrotyrosine in stone formers, which could bring about structural and functional modifications of THP in hyperoxaluric patients. A cross-reaction with nitrated bovine serum albumin confirms that the raised antibody has certain paratopes similar to the epitope of nitrated protein molecules. Detection of 3-nitrotyrosine in stone formers THP indicates that it is one of the key factors influencing the conversion of THP to a structurally and immunologically altered form during calcium oxalate stone formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available