4.7 Article

Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis

Journal

PLANT MOLECULAR BIOLOGY
Volume 60, Issue 4, Pages 519-531

Publisher

SPRINGER
DOI: 10.1007/s11103-005-4923-y

Keywords

2C-methyl erythritol 4-phosphate (MEP) pathway; glucose oxidase; indole; mevalonate (MVA) pathway

Ask authors/readers for more resources

In response to caterpillar herbivory, alfalfa and related plant species defend themselves through the induction of saponin and volatile terpenoid biosynthesis. Both these types of defensive compounds are derived from the metabolic intermediate, isopentenyl diphosphate (IPP). In plants, two distinct biosynthetic pathways can generate IPP; the cytosolic mevalonate pathway and the plastid-associated 2C-methyl erythritol 4-phosphate (MEP) pathway. In Medicago truncatula, transcript levels of key regulatory genes active in the early steps of these biosynthetic pathways were measured in response to larval herbivory by the beet armyworm, Spodoptera exigua. Transcripts encoding enzymes at early steps of both terpenoid pathways were lower in caterpillar-damaged leaves. Higher degrees of herbivore damage accentuated the decrease in transcript levels; however, transcript amounts were not affected by insect larval stage. Insect larvae, manipulated to reduce labial gland salivary secretions, were used to examine the role of the salivary elicitors in modulating gene expression. Results suggest that an insect salivary factor, possibly glucose oxidase (GOX), may be involved in reduction of transcript levels following herbivory. Addition of GOX or hydrogen peroxide to mechanically wounded leaves confirm these findings. In comparison, transcript levels of a gene encoding a putative terpene synthase are induced in mechanically- or insect-damaged leaves. These data show that insect salivary factors can act to suppress transcript levels of genes involved in plant defense pathways. Findings also suggest that in response to stress such as insect herbivory, regulation occurs at the early steps of the MEP pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available