4.7 Article

Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters

Journal

LIMNOLOGY AND OCEANOGRAPHY
Volume 51, Issue 2, Pages 1167-1179

Publisher

WILEY
DOI: 10.4319/lo.2006.51.2.1167

Keywords

-

Ask authors/readers for more resources

Theory and seaborne measurements are presented for the near infrared (NIR: 700-900 nm) water-leaving reflectance in turbid waters. According to theory, the shape of the NIR spectrum is determined largely by pure water absorption and is thus almost invariant. A similarity NIR reflectance spectrum is defined by normalization at 780 nm. This spectrum is calculated from seaborne reflectance measurements and is compared with that derived from laboratory water absorption measurements. Factors influencing the shape of the similarity spectrurn are analyzed theoretically and by radiative transfer simulations. These simulations show that the similarity spectrum is valid for waters ranging from moderately turbid (e.g., water-leaving reflectance at 780 nm of order 10(-4) or total suspended matter concentration of order 0.3 g m(-3)) to extremely turbid (e.g., reflectance at 780 nm of order 10(-1) or total suspended matter of order 200 g m(-3)). Measurement uncertainties are analyzed, and the air-sea interface correction is shown to be critical for low reflectances, Applications of the NIR similarity spectrum to atmospheric correction of ocean color data and to the quality control of seaborne, airborne, and spaceborne reflectance measurements in turbid waters are outlined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available