3.8 Article

Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG

Journal

MEDICINE AND SCIENCE IN SPORTS AND EXERCISE
Volume 38, Issue 3, Pages 562-569

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1249/01.mss.0000193562.22001.e8

Keywords

athletic shoes; running performance; metatarsophangeal joint; biomechanics

Categories

Ask authors/readers for more resources

Purpose: It has been shown that mechanical energy is dissipated at the metatarsophalangeal (MTP) joint during running and jumping. Furthermore, increasing the longitudinal bending stiffness of the midsole significantly reduced the energy dissipated at the MTP joint and increased jump performance. It was hypothesized that increasing midsole longitudinal bending stiffness would also lead to improvements in running economy. This study investigated the influence of midsole longitudinal bending stiffness on running economy (performance variable) and evaluated the local effects on joint energetics and muscular activity. Methods: Carbon fiber plates were inserted into running shoe midsoles and running economy, joint energy, and electromyographic (EMG) data were collected on 13 subjects. Results: Approximately a 1% metabolic energy savings was observed when subjects ran in a stiff midsole relative to the control midsole. Subjects with a greater body mass had a greater decrease in oxygen consumption rates in the stiff midsole relative to the control midsole condition. The stiffer midsoles showed no significant differences in energy absorption at the MTP joint compared with the control shoe. Finally, no significant changes were observed in muscular activation. Conclusion: Increasing midsole longitudinal bending stiffness led to improvements in running economy, yet the underlying mechanisms that can be attributed to this improvement are still not fully understood.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available