4.7 Article

In vitro Modeling of paraxial and lateral mesoderm differentiation reveals early reversibility

Journal

STEM CELLS
Volume 24, Issue 3, Pages 575-586

Publisher

ALPHAMED PRESS
DOI: 10.1634/stemcells.2005-0256

Keywords

embryonic stem cell; mesoderm; reversibility

Ask authors/readers for more resources

Endothelial cells (ECs) are thought to be derived mainly from the vascular endothelial growth factor receptor 2 (VEGFR-2)(+) lateral mesoderm during early embryogenesis. In this study, we specified several pathways for EC differentiation using a murine embryonic stem (ES) cell differentiation culture system that is a model for cellular processes during early embryogenesis. Based on the results of in vitro fate analysis, we show that, in the main pathway, committed ECs are differentiated through the VEGFR-2(+) platelet-derived growth factor receptor alpha (PDGFR-alpha)(-) single-positive (VSP) population that is derived from the VEGFR-2(+)PDGFR-alpha(+) double-positive (DP) population. This major differentiation course was also confirmed using DNA microarray analysis. In addition to this main pathway, however, ECs also can be generated from the VEGFR-2-PDGFR-alpha(+) single-positive (PSP) population, which represents the paraxial mesodermal lineage and is also derived from the DP population. Our results strongly suggest that, even after differentiation from the common progenitor DP population into the VSP and PSP populations, these two populations continue spontaneous switching of their surface phenotype, which results in switching of their eventual fates. The rate of this interlineage conversion between VSP and PSP is unexpectedly high. Because of this potential to undergo fate switch, we conclude that ECs can be generated via multiple pathways in in vitro ES cell differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available