4.4 Article

p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1

Journal

CANCER CHEMOTHERAPY AND PHARMACOLOGY
Volume 57, Issue 3, Pages 317-327

Publisher

SPRINGER
DOI: 10.1007/s00280-005-0050-3

Keywords

sulforaphane; cell cycle arrest; HT-29 cells; mitogen-activated protein kinase

Funding

  1. NCI NIH HHS [R01 CA-073674-07] Funding Source: Medline

Ask authors/readers for more resources

Isothiocyanate sulforaphane (SFN) is a potent cancer chemopreventive agent. We investigated the mechanisms underlying the anti-proliferative effects of SFN in the human colon carcinoma cell line, HT-29. We demonstrate that SFN inhibits the growth of HT-29 cells in a dose- and time-dependent manner. Treatment of serum-stimulated HT-29 cells with SFN suppressed the re-initiation of cell cycle by inducing a G(1) phase cell cycle arrest. At high doses (> 25 mu M), SFN dramatically induces the expression of p21(CIP1) while significantly inhibits the expression of the G1 phase cell cycle regulatory genes such as cyclin D1, cyclin A, and c-myc. This regulation can be detected at both the mRNA and protein levels as early as 4 h post-treatment of SFN at 50 mu M. Additionally, SFN activates MAPKs pathways, including ERK, JNK and p38. Exposure of HT-29 cells with both SFN and an antioxidant, either NAC or GSH, completely blocked the SFN-mediated activation of these MAPK signaling cascades, regulation of cyclin D1 and p21(CIP1) gene expression, and G1phase cell cycle arrest. This finding suggests that SFN-induced oxidative stress plays a role in these observed effects. Furthermore, the activation of the ERK and p38 pathways by SFN is involved in the upregulation of p21(CIP1) and cyclin D1, whereas the activation of the JNK pathway plays a contradictory role and may be partially involved in the downregulation of cyclin D1. Because cyclin D1 and p21(CIP1) play opposing roles in G1 phase cell cycle progression regulation, blocking the activation of each MAPK pathway with specific MAPK inhibitors, is unable to rescue the SFN-induced G1 phase cell cycle arrest in HT-29 cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available