4.0 Article

Reliability of different blood indices to explore the oxidative stress in response to maximal cycling and static exercises

Journal

CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING
Volume 26, Issue 2, Pages 106-112

Publisher

WILEY
DOI: 10.1111/j.1475-097X.2006.00658.x

Keywords

cycling exercise; erythrocyte reduced glutathione; reduced ascorbic acid; static contractions; thio-barbituric acid reactive substances; total antioxidant status

Categories

Ask authors/readers for more resources

This study compares the changes in four blood markers of exercise-induced oxidative stress in response to exercise protocols commonly used to explore the global muscle performance at work (maximal incremental cycle) and endurance to fatigue of selected muscles (static handgrip and thumb adduction). Cycling and static exercises allow the muscle to work in aerobic and anaerobic conditions, respectively. Healthy adults performed an incremental cycling exercise until volitional exhaustion and, on separated days, executed infra-maximal static thumb adduction and handgrip until exhaustion. Exercise-induced oxidative stress was assessed by the increased plasma concentration of thiobarbituric acid reactive substances (TBARS), the consumption of plasma reduced ascorbic acid (RAA), and erythrocyte reduced glutathione (GSH) antioxidants, and the changes in the total antioxidant status (TAS) of plasma. Five minutes after the end of the incremental cycling exercise, we measured a peak increase in TBARS level, maximal consumption of GSH and RAA, and a modest but significant decrease in TAS concentration. In response to both static thumb adduction and handgrip, significant variations of TBARS, GSH and RAA occurred but we did not measure any significant change in TAS level throughout the 20-min recovery period of both exercise bouts. The present study shows that only the changes in TBARS, GSH and RAA explore both dynamic and static exercises. In addition, TAS measurement does not seem to represent a reliable and unique tool to explore exercise-induced oxidative stress, at least during isometric efforts that allow the muscle to work under anaerobic condition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available