4.5 Article

Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia -: An in vivo study

Journal

PROTEOMICS
Volume 6, Issue 5, Pages 1681-1694

Publisher

WILEY
DOI: 10.1002/pmic.200500417

Keywords

actin; drug resistance; leukemia; vincristine

Ask authors/readers for more resources

Intrinsic or acquired resistance to vincristine (VCR), an antimicrotubule agent used in the treatment of childhood acute lymphoblastic leukemia (ALL), is a major clinical problem. Using a clinically relevant NOD/SCID mouse xenograft model of ALL, we established that alterations in the actin and tubulin cytoskeleton are involved in in vivo VCR resistance. Altered protein expression between VCR-sensitive ALL xenografts, and xenografts with intrinsic or acquired VCR resistance, was identified using 2-D DIGE coupled with MS. Of the 19 proteins displaying altered expression, 11 are associated with the actin cytoskeleton. Altered expression of the actin-and/or tubulin-binding proteins gelsolin, moesin, ezrin, tropomyosin, CAP-G, HSP27, HSP70, TCP-1, and stathmin were associated with in vivo VCR resistance. The actin-regulating protein gelsolin was increased in both acquired and resistant leukemia as confirmed by immunoblotting and gene expression. The major cytoskeletal protein, gamma-actin, was down-regulated in the VCR-resistant leukemia xenografts; in contrast, there was no significant change in beta-actin expression. This study provides the first evidence for a role of the actin cytoskeleton in intrinsic and acquired in vivo antimicrotubule drug resistance in childhood leukemia and highlights the power of 2-D DIGE for the discovery of resistance markers, pharmacoproteomics, and signaling pathways in cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available