4.8 Article

Single-molecule circuits with well-defined molecular conductance

Ask authors/readers for more resources

We measure the conductance of amine-terminated molecules by breaking Au point contacts in a molecular solution at room temperature. We find that the variability of the observed conductance for the diamine molecule-Au junctions is much less than the variability for diisonitrile- and dithiol-Au junctions. This narrow distribution enables unambiguous conductance measurements of single molecules. For an alkane diamine series with 2-8 carbon atoms in the hydrocarbon chain, our results show a systematic trend in the conductance from which we extract a tunneling decay constant of 0.91 +/- 0.03 per methylene group. We hypothesize that the diamine link binds preferentially to undercoordinated Au atoms in the junction. This is supported by density functional theory-based calculations that show the amine binding to a gold adatom with sufficient angular flexibility for easy junction formation but well-defined electronic coupling of the N lone pair to the Au. Therefore, the amine linkage leads to well-defined conductance measurements of a single molecule junction in a statistical study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available