4.7 Article

Metabolic engineering under uncertainty. I: Framework development

Journal

METABOLIC ENGINEERING
Volume 8, Issue 2, Pages 133-141

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2005.11.003

Keywords

kinetic modeling; (log)linear modeling; metabolic control analysis; bioreactors; central carbon metabolism

Ask authors/readers for more resources

Standard bioprocess conditions have been widely applied for the microbial conversion of raw material to essential industrial products. Successful metabolic engineering (ME) strategies require a comprehensive framework to manage the complexity embedded in cellular metabolism, to explore the impacts of bioprocess conditions on the cellular responses, and to deal with the uncertainty of the physiochemical parameters. We have recently developed a computational and statistical framework that is based on Metabolic Control Analysis and uses a Monte Carlo method to simulate the uncertainty in the values of the system parameters [Wang, L., Birol, I., Hatzimanikatis, V., 2004. Metabolic control analysis under uncertainty: framework development and case studies. Biophys. J. 87(6), 3750-3763]. In this work, we generalize this framework to incorporate the central cellular processes, such as cell growth, and different bioprocess conditions, such as different types of bioreactors. The framework provides the mathematical basis for the quantification of the interactions between intracellular metabolism and extracellular conditions, and it is readily applicable to the identification of optimal ME targets for the improvement of industrial processes [Wang, L., Hatzimanikatis, V., 2005. Metabolic engineering under uncertainty. II: analysis of yeast metabolism. Submitted]. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available