4.1 Review

Shock-metamorphosed zircon in terrestrial impact craters

Journal

METEORITICS & PLANETARY SCIENCE
Volume 41, Issue 3, Pages 433-454

Publisher

WILEY
DOI: 10.1111/j.1945-5100.2006.tb00472.x

Keywords

-

Ask authors/readers for more resources

To ascertain the progressive stages of shock metamorphism of zircon, samples from three well-studied impact craters were analyzed by optical microscopy, scanning electron microscopy (SEM), and Raman spectroscopy in thin section and grain separates. These samples are comprised of well-preserved, rapidly quenched impactites from the Ries crater, Germany, strongly annealed impactites from the Popigai crater, Siberia, and altered, variably quenched impactites from the Chiexulab crater, Mexico. The natural samples were compared with samples of experimentally shock-metamorphosed zircon. Below 20 GPa, zircon exhibits no distinct shock features. Above 20 GPa, optically resolvable planar microstructures occur together with the high-pressure polymorph reidite, which was only retained in the Ries samples. Decomposition of zircon to ZrO2 only occurs in shock stage IV melt fragments that were rapidly quenched. This is not only a result of post-shock temperatures in excess of similar to 1700 degrees C but could also be shock pressure-induced, which is indicated by possible relics or a high-pressure polymorph of ZrO2. However, ZrO2 was found to revert to zircon with a granular texture during devitrification of impact melts. Other granular textures represent recrystallized amorphous ZrSiO4 and reidite that reverted to zircon. This requires annealing temperatures > 1100 degrees C. A systematic study of zircons from a continuous impactite sequence of the Chiexulab impact structure yields implications for the post-shock temperature history of suevite-like rocks until cooling below -600 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available