4.8 Article

Effect of resin hydrophilicity and temperature on water sorption of dental adhesive resins

Journal

BIOMATERIALS
Volume 27, Issue 9, Pages 1695-1703

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2005.09.037

Keywords

water sorption; solubility parameter; hydrophilicity; temperature; resin

Funding

  1. NIDCR NIH HHS [R01 DE15306, R01 DE014911] Funding Source: Medline

Ask authors/readers for more resources

This study examined the effects of copolymer hydrophilicity and temperature on water sorption and solubility characteristics of five copolymer blends of increasing degree of hydrophilicity using gravimetric measurements. Six resin disks (15 mm in diameter x 1 mm in thickness) were prepared from each copolymer blend and were stored in deionised water at 23, 37 and 55 degrees C. Water sorption and solubility of the resin disks were measured before and after water immersion and desiccation. Multiple regression analysis of water sorption was performed on two independent variables, copolymer hydrophilicity and temperature. Maximum water sorption increased significantly with Hoy's total cohesive energy density (it), Hoy's solubility parameter for polar forces (delta(p)) and hydrogen bonding (delta(h)), but was not influenced by temperature. However, a significant positive relationship was observed between diffusion coefficients (obtained using Fick's law of diffusion) and temperature. The water absorption activation energy was 10 kJ/mol for the most hydrophilic copolymer blend R5 and 35-51 kJ/mol for copolymer blends R1-R4. The positive relationship between maximum water uptake and copolymer hydrophilicity suggests that water molecules diffuse through the polymer matrices by binding successively to the polar sites via hydrogen bonding. Such water sorption may determine the durability of resin-dentine bonds. (C) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available