4.6 Article

Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns

Journal

PRECISION AGRICULTURE
Volume 7, Issue 1, Pages 33-44

Publisher

SPRINGER
DOI: 10.1007/s11119-005-6788-0

Keywords

airborne imagery; grain sorghum; high resolution; QuickBird imagery; remote sensing; yield monitor; yield patterns

Ask authors/readers for more resources

Timely and accurate information on crop conditions obtained during the growing season is of vital importance for crop management. High spatial resolution satellite imagery has the potential for mapping crop growth variability and identifying problem areas within fields. The objectives of this study were to use QuickBird satellite imagery for mapping plant growth and yield patterns within grain sorghum fields as compared with airborne multispectral image data. A QuickBird 2.8-m four-band image covering a cropping area in south Texas, USA was acquired in the 2003 growing season. Airborne three-band imagery with submeter resolution was also collected from two grain sorghum fields within the satellite scene. Yield monitor data collected from the two fields were resampled to match the resolutions of the airborne imagery and the satellite imagery. The airborne imagery was related to yield at original submeter, 2.8 and 8.4 m resolutions and the QuickBird imagery was related to yield at 2.8 and 8.4 m resolutions. The extracted QuickBird images for the two fields were then classified into multiple zones using unsupervised classification and mean yields among the zones were compared. Results showed that grain yield was significantly related to both types of image data and that the QuickBird imagery had similar correlations with grain yield as compared with the airborne imagery at the 2.8 and 8.4 m resolutions. Moreover, the unsupervised classification maps effectively differentiated grain production levels among the zones. These results indicate that high spatial resolution satellite imagery can be a useful data source for determining plant growth and yield patterns for within-field crop management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available