4.5 Article

Cathodic electrochemiluminescence of acetonitrile, acetonitrile-1,10-phenanthroline and acetonitrile-ternary Eu(III) complexes at a gold electrode

Journal

LUMINESCENCE
Volume 21, Issue 2, Pages 81-89

Publisher

WILEY-BLACKWELL
DOI: 10.1002/bio.888

Keywords

electrochemiluminescence; gold electrode; acetonitrile; 1,10-phenanthroline; ternary Eu(III) complexes; tetrabutylammonium peroxydisulphate

Ask authors/readers for more resources

Cathodic electrochemiluminescence (ECL) behaviours of the acetonitrile, acetonitrile-1,10-phenanthroline (phen) and acetonitrile-ternary Eu(III) complex systems at a gold electrode were studied. One very weak cathodic ECL-2 at -3.5 V was observed in 0.1 mol/L tetrabutylammonium tetrafluoroborate (TBABF(4)) acetonitrile solution. When 1.0 mmol/L tetrabutyl-ammonium peroxydisulphate [(TBA)(2)S2O8] was added to 0.1 mol/L TBABF(4) acetonitrile solution, another cathodic ECL-1 at -2.7 V appeared and the potential for ECL-2 was shifted from -3.5 to -3.1. V. Furthermore, ECL-2 intensity was enhanced about 20-fold. When 1 x 10(-4) mol/L phen was added to 0.1 mol/L TBABF(4) + 10 mmol/L (TBA)(2)S2O8 acetonitrile solution, the ECL intensities of ECL-1 and ECL-2 were enhanced about 20-fold compared with those of 0.1 mol/L TBABF(4) + 10 mmol/L (TBA)(2)S2O8 acetonitrile solution. The maximum emission peaks of ECL-1 and ECL-2 in the three systems mentioned above appeared at about 530 nm. The products obtained by electrolysing 0.1 mol/L TBABF(4) acetonitrile solution at -3.5 V for 20 min were analysed by Fourier Transform Infrared (FTIR) spectra and gas chromatography-mass spectrometry (GC-MS) and the emitter of ECL-1 and ECL-2 was identified as excited state polyacetonitrile. When ternary Eu(III) complexes were presented in 0.1. mol/L TBABF4 + 10 mmol/L (TBA)(2)S2O8 acetonitrile solution, another maximum emission peak with a narrow band centred at about 610 nm appeared in ECL-1 in addition to the maximum emission peaks at about 530 nm for ECL-1 and ECL-2. The emitter of ECL emission at 610 nm was identified as the excited states Eu(III)*. The mechanisms for cathodic ECL behaviours of the acetonitrile, acetonitrile-phen and acetonitrile-ternary Eu(III) complex systems at a gold electrode have been proposed. The extremely sharp emission bands for ternary Eu(III) complexes may have analytical potential. Copyright (c) 2006 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available