4.5 Article

Anharmonicity of amide modes

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 8, Pages 3798-3807

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0530092

Keywords

-

Funding

  1. NCRR NIH HHS [RR01348] Funding Source: Medline
  2. NIGMS NIH HHS [GM12592] Funding Source: Medline

Ask authors/readers for more resources

The principal contributions to the anharmonic coupling of amide vibrations are explored with the objective of comparing recent experiments with density functional theory and evaluating simple models of mode coupling. Experimental information obtained by means of two-dimensional infrared spectroscopy (2D IR) is reasonably well predicted by the computed one- and two-quantum anharmonic modes of amide-A, -I, and -II types in mono-, di- and tripeptides. The expansion of the vibrational energy up to the cubic and quartic coupling of harmonic modes suggested criteria to assess how localized are the forces determining the anharmonicity. The off-diagonal anharmonicity between an amide-A and one other amide mode was shown to be mainly determined by forces involving only these two modes, whereas the off-diagonal anharmonicity of two amide-I modes in peptides depended significantly on forces due to motions other than those of the amide-I type. Both the diagonal and off-diagonal anharmonicities exhibit sensitivity to peptide structures. These results should prove useful in linking 2D IR experimental results to secondary structure. Further, the results are used to evaluate the vibrational exciton model for the mixed-mode anharmonicities of the amide-I transitions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available