4.6 Article

Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 9, Pages 5476-5483

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M512453200

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM 48179] Funding Source: Medline

Ask authors/readers for more resources

The Tat ( twin arginine translocation) systems of thylakoids and bacteria transport fully folded protein substrates without breaching the permeability barrier of the membrane. Two components of the thylakoid system, cpTatC and Hcf106, compose a precursor-bound receptor complex. The third component, Tha4, assembles with the precursor-bound receptor complex for the translocation step and is thought to compose at least part of the protein-conducting channel. Here, we used two different cross-linking approaches to explore the organization of Tha4 in the translocase. These cross-linking techniques showed that transition to an active protein transport state resulted in an alignment of the Tha4 amphipathic helix and C-terminal tail domains to form Tha4 oligomers. Oligomerization required functional Tha4, a twin arginine signal peptide, and an active cpTatC-Hcf106 receptor complex. The spectrum of oligomers obtained was independent of the mature folded domain of the precursor. We propose a trapdoor mechanism for translocation whereby aligned oligomers of Tha4 amphipathic helices fold into the membrane to allow formfitting passage of precursor proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available