4.6 Article

Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength

Journal

APPLIED PHYSICS LETTERS
Volume 88, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2182096

Keywords

-

Ask authors/readers for more resources

ZnO commonly exhibits luminescence in the visible spectral range due to different intrinsic defects. In order to study defect emissions, photoluminescence from ZnO nanostructures prepared by different methods (needles, rods, shells) was measured as a function of excitation wavelength and temperature. Under excitation at 325 nm, needles exhibited orange-red defect emission, rods exhibited yellow defect emission, while shells exhibited green defect emission. Obvious color change from orange to green was observed for needles with increasing excitation wavelengths, while nanorods (yellow) showed smaller wavelength shift and shells (green) showed no significant spectral shift. Reasons for different wavelength dependences are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available