4.6 Article

Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 12, Issue 9, Pages 2542-2549

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200501010

Keywords

carbon; nanotubes; platinum; salt effect

Ask authors/readers for more resources

We present a novel approach to the in situ deposition of size-controlled platinum nanoparticles on the exterior walls of carbon nanotubes (CNTs). The reduction of metal ions in ethylene glycol (EG), by the addition of a salt such as sodium dodecyl sulfate (SDS), p-CH3C6H4SO3Na, LiCF3SO3, or LiClO4, results in high dispersions and high loadings of platinum nanoparticles on CNTs without aggregation. We have performed controlled experiments to elucidate the mechanism. By exploiting the salt effect, our method effectively depresses homogeneous nucleation, leading to selective heterogeneous metal nucleation and growth, even oil unmodified CNTs. In the 2.3-9.6 nm size range, the size of platinum nanoparticles, at 50% loading, can be controlled by changing the concentration of metal ions, the reaction temperature, the reducing reagent or the means by which reactive solutions are added. Our method provides a flexible route towards the preparation of novel one-dimensional hybrid materials, for which a number of promising applications in a variety of fields can be envisioned.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available