4.5 Article

Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death

Journal

BRAIN RESEARCH
Volume 1077, Issue -, Pages 24-36

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2006.01.011

Keywords

cell death; dysfunction; hippocampus; Morris water maze; stereology; traumatic brain injury

Categories

Funding

  1. NINDS NIH HHS [NS27544, NS02197] Funding Source: Medline

Ask authors/readers for more resources

Lateral fluid percussion injury (LFP), a model of mild-moderate concussion, leads to the temporary loss of the capacity for experience-dependent plasticity in developing rats. To determine if this injury-induced loss in capacity for plasticity is due to cell death, we conducted stereological measurements within the cerebral cortex and CA3 of the hippocampus 2 weeks following mild, moderate or severe LFP in the post-natal day 19 (P19) rat. Results indicated that there was no significant change in the absolute number of neurons, regardless of injury severity, in either the ipsilateral cortex (sham = 10.6 +/- 1.7, mild = 11.5 +/- 2.1, moderate = 10.0 +/- 1.0, severe = 10.9 +/- 1.3 million neurons) or CA3 region of the hippocampus (sham = 251 +/- 38, mild = 289 +/- 2, moderate = 245 +/- 48, severe = 255 +/- 62 thousand neurons). Even though there was no evidence of a significant degree of injury-induced cell death, animals exhibited cognitive deficits as revealed in a Morris water maze task (MWM). The MWM results indicated that regardless of injury severity, P19-injured rats exhibited a significant increase in escape latency compared to age-matched shams (injury by day; P < 0.001) and a significant increase in the number of trials needed to reach criterion (P < 0.05). Analysis of a probe trial one week post-MWM training, however, indicated that there was no deficit in storage or recall of the learned behavior as analyzed by platform hits (sham = 2.9 +/- 0.37, mild = 2.0 +/- 0.40, moderate = 1 +/- 0, severe 2.8 +/- 0.62) or percent time spent in, or immediately surrounding, the platform area (sham 13.5 +/- 1.71, mild = 10.8 +/- 2.32, moderate = 12.7 +/- 0, severe = 13.5 +/- 1.69). Taken together, these results indicate that while LFP in P19-injured animals does not lead to significant cell death, it does generate acute, mild deficits in MWM performance. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available