4.7 Article

Approach to the 4/5 law in homogeneous isotropic turbulence

Journal

JOURNAL OF FLUID MECHANICS
Volume 550, Issue -, Pages 175-184

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112005008438

Keywords

-

Ask authors/readers for more resources

Kolmogorov's similarity hypotheses and his 4/5 law are valid at very large Reynolds numbers. For flows encountered in the laboratory, the effect of a finite Reynolds number and of the non-stationarity or inhomogeneity associated with the large scales can affect the behaviour of the scales in the inertial range significantly. This paper focuses on the source of inhomogeneity in two types of flows, those dominated mainly by a decay of energy in the streamwise direction and those which are forced, through a continuous injection of energy at large scales. Results based on a parameterization of the second-order velocity structure function indicate that the normalized third-order structure function approaches 4/5 much more rapidly for forced than for decaying turbulence. This trend is supported by grid turbulence measurements and numerical data in a periodic box.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available