4.6 Article

Low-noise polymeric nanomechanical biosensors

Journal

APPLIED PHYSICS LETTERS
Volume 88, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2187437

Keywords

-

Ask authors/readers for more resources

A sensor device based on a single polymer cantilever and optical readout has been developed for detection of molecular recognition reactions without the need of a reference cantilever for subtraction of unspecific signals. Microcantilevers have been fabricated in the photoresist SU-8 with one surface passivated with a thin fluorocarbon layer. The SU-8 surface is sensitized with biological receptors by applying silanization methods, whereas the fluorocarbon surface remains inert to these processes. The thermal and mechanical properties of the chosen materials allow overcoming the main limitations of gold-coated silicon cantilevers: the temperature, pH, and ionic strength cross sensitivities. This is demonstrated by comparing the response of SU-8 cantilevers and that of gold-coated silicon nitride cantilevers to variations in temperature and pH. The sensitivity of the developed polymeric nanomechanical sensor is demonstrated by real-time detection of the human growth hormone with sensitivity in differential surface stress of about 1 mN/m. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available