4.7 Article

Identification of phosphatases for Smad in the BMP/DPP pathway

Journal

GENES & DEVELOPMENT
Volume 20, Issue 6, Pages 648-653

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gad.1384706

Keywords

bone morphogenctic protein; decapentaplegic; mothers against decapentaplegic; Smad; pyruvate dehydrogenase phosphatase

Ask authors/readers for more resources

Phosphorylation of the SSXS motif of Smads is critical in activating the transforming growth factor beta (TGF-beta) and bone morphogenetic protein (BMP) pathways. However, the phosphatase(s) involved in dephosphorylating and hence inactivating Smads remained elusive. Through RNA interference (RNAi)-based screening of serine/threonine phosphatases in Drosophila S2 cells, we identified pyruvate dehydrogenase phosphatase (PDP) to be required for dephosphorylation of Mothers against Decapentaplegic (MAD), a Drosophila Smad. Biochemical and genetic evidence suggest that PDP directly dephosphorylates MAD and inhibits signal transduction of Decapentaplegic (DPP). We show that the mammalian PDPs are important in dephosphorylation of BMP-activated Smad1 but not TGF-beta-activated Smad2 or Smad3. Thus, PDPs specifically inactivate Smads in the BMP/DPP pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available