4.6 Article

High concentration in-diffusion of phosphorus in Si from a spray-on source

Journal

JOURNAL OF APPLIED PHYSICS
Volume 99, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2179197

Keywords

-

Ask authors/readers for more resources

High concentration in-diffusion of phosphorus in both Czochralski grown and solar grade multicrystalline Si from a spray-on liquid source has been studied by secondary ion mass spectrometry and electrochemical capacitance-voltage profiling. By extraction of the concentration dependent effective diffusivity employing the Boltzmann-Matano analysis, we adapt an integrated diffusion model based on a previous work by Uematsu [J. Appl. Phys. 82, 2228 (1997)], in order to gain insight into the mechanisms governing such in-diffusions. We find that in the tail region of the profiles, diffusion is mediated by interaction with Si self-interstitials, whereas a vacancy mechanism via doubly negative vacancies dominates in the higher concentration region towards the surface, in correspondence with a previous analysis by Fair and Tsai [J. Electrochem. Soc. 124, 1107 (1977)]. Moreover, we find that both the vacancy and interstitial mechanisms can be described by an Arrhenius behavior, exhibiting apparent activation energies of 5.2 +/- 0.3 and 2.1 +/- 0.1 eV, respectively. The results form the basis for a simplified diffusion simulation, allowing simulation and subsequent optimization of phosphorus diffused emitters commonly employed in Si solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available