4.5 Article

The law of action and reaction for the effective force in a non-equilibrium colloidal system

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 18, Issue 10, Pages 2825-2836

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/18/10/008

Keywords

-

Ask authors/readers for more resources

We study a non-equilibrium Langevin many-body system containing two 'test' particles and many 'background' particles. The test particles are spatially confined by a harmonic potential, and the background particles are driven by an external driving force. Using numerical simulations of the model, we formulate an effective description of the two test particles in a non-equilibrium steady state. In particular, we investigate several different definitions of the effective force acting between the test particles. We find that the law of action and reaction does not hold for the total mechanical force exerted by the background particles, but that it does hold for the thermodynamic force defined operationally on the basis of an idea used to extend the first law of thermodynamics to non-equilibrium steady states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available