4.6 Article

A chelating cellulose adsorbent for the removal of Cu(II) from aoueous solutions

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 99, Issue 6, Pages 2888-2897

Publisher

WILEY
DOI: 10.1002/app.22568

Keywords

fibers; functionalization of polymers; adsorption; copper; wastewater

Ask authors/readers for more resources

Regenerated cellulose wood pulp was grafted with the vinyl monomer glycidyl methacrylate (GMA) using ceric ammonium nitrate as initiator and was further fuctionalised with imidazole to produce a novel adsorbent material, cellulose-g-GMA-imidazole. All cellulose, grafted cellulose and functionalized cellulose grafts were physically and chemically characterized using a number of analytical techniques, including elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The cellulose-g-GMA material was found to contain 1.75 mmol g(-1) epoxy groups. These epoxy groups permitted introduction of metal binding functionality to produce the cellulose-g-GMA-imidazole final product. Following characterization, a series of adsorption studies were carried out on the cellulose-g-GMA-imidazole to assess its capacity in the removal of Cu2+ ions from solution. Cellulose-g-GMA-imidazole sorbent showed an uptake of similar to 70 mg g(-1) of copper from aqueous solution. The adsorption process is best described by the Langmuir model of adsorption, and the thermodynamics of the process suggest that the binding process is mildly exothermic. The kinetics of the adsorption process indicated that copper uptake occurred within 30 min and that pseudo-second-order kinetics best describe the overall process. (c) 2005 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available