4.7 Article Proceedings Paper

The Potential of PARP Inhibitors in Genetic Breast and Ovarian Cancers

Journal

RECENT ADVANCES IN CLINICAL ONCOLOGY
Volume 1138, Issue -, Pages 136-145

Publisher

WILEY-BLACKWELL
DOI: 10.1196/annals.1414.020

Keywords

breast cancer; ovarian cancer; BRCA1 gene; BRCA2 gene; cancer genetics; poly(ADP-ribose) polymerase-1 (PARP-1); PARP inhibitors

Ask authors/readers for more resources

The abundant nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1), represents an important novel target in cancer therapy. PARP-1 is essential to the repair of DNA single-strand breaks via the base excision repair pathway. Inhibitors of PARP-1 have been shown to enhance the cytotoxic effects of ionizing radiation and DNA damaging chemotherapy agents, such as the methylating agents and topoisomerase I inhibitors. There are currently at least five PARP inhibitors in clinical trial development. Recent in vitro and in vivo evidence suggests that PARP inhibitors could be used not only as chemo/radiotherapy sensitizers, but as single agents to selectively kill cancers defective in DNA repair, specifically cancers with mutations in the breast cancer associated (BRCA) 1 and 2 genes. This theory of selectively exploiting cells defective in one DNA repair pathway by inhibiting another is a major breakthrough in the treatment of cancer. BRCA1/2 mutations are responsible for the majority of genetic breast/ovarian cancers, known as the hereditary breast ovarian cancer syndrome. This review summarizes the preclinical and clinical evidence for the potential of PARP inhibitors in genetic breast and ovarian cancers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available