4.8 Article

Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0509384103

Keywords

cobalamin; symbiosis; bacteria; vitamin B-12; biosynthesis

Funding

  1. NIGMS NIH HHS [R01 GM031030, GM 31030] Funding Source: Medline

Ask authors/readers for more resources

An insight into a previously unknown step in B-12 biosynthesis was unexpectedly obtained through our analysis of a mutant of the symbiotic nitrogen fixing bacterium Sinorhizobium meliloti. This mutant was identified based on its unusually bright fluorescence on plates containing the succinoglycan binding dye calcofluor. The mutant contains a Tn5 insertion in a gene that has not been characterized previously in S. meliloti. The closest known homolog is the bluB gene of Rhodobacter capsulatus, which is implicated in the biosynthesis of B-12 (cobalamin). The S. meliloti bluB mutant is unable to grow in minimal media and fails to establish a symbiosis with alfalfa, and these defects can be rescued by the addition of vitamin B-12 (cyanocobalamin) or the lower ligand of cobalamin, 5,6-dimethylbenzimidazole (DMB). Biochemical analysis demonstrated that the bluB mutant does not produce cobalamin unless DMB is supplied. Sequence comparison suggests that BluB is a member of the NADH/flavin mononucleotide (FMN)-dependent nitroreductase family, and we propose that it is involved in the conversion of FMN to DMB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available