4.7 Article

The human dorsal premotor cortex generates on-line error corrections during sensorimotor adaptation

Journal

JOURNAL OF NEUROSCIENCE
Volume 26, Issue 12, Pages 3330-3334

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3898-05.2006

Keywords

sensorimotor adaptation; premotor cortex; TMS; learning; human; training

Categories

Ask authors/readers for more resources

A number of different sites in the human brain have been shown to play a role in sensorimotor adaptation. However, the specific role played by each of these structures in the learning process is poorly understood. In the present study, the contribution of the dorsal aspect of the premotor cortex was examined by disrupting activity at this site using transcranial magnetic stimulation (TMS) while subjects wearing prism goggles pointed at visual targets. This manipulation slowed down the rate of adaptation when vision of the hand was available throughout the movement and reduced the presence of on-line trajectory corrections. This was accompanied by a reduced shift in the felt position of the arm. In contrast, TMS did not cause any alteration in the performance of this task when vision of the hand was available only at the end of the movement. Thus, we infer from this pattern of results that the human dorsal premotor cortex contributes to the generation of the visually based on-line error corrections that are responsible for the remapping of arm position sense underlying sensorimotor adaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available