4.8 Article

Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation

Journal

NATURE
Volume 440, Issue 7083, Pages 561-564

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature04530

Keywords

-

Funding

  1. NIGMS NIH HHS [R37 GM045443] Funding Source: Medline

Ask authors/readers for more resources

A fundamental aspect of the biogenesis and function of eukaryotic messenger RNA is the quality control systems that recognize and degrade non-functional mRNAs. Eukaryotic mRNAs where translation termination occurs too soon (nonsense-mediated decay) 1 or fails to occur (non-stop decay) 2 are rapidly degraded. We show that yeast mRNAs with stalls in translation elongation are recognized and targeted for endonucleolytic cleavage, referred to as 'no-go decay'. The cleavage triggered by no-go decay is dependent on translation and involves Dom34p and Hbs1p. Dom34p and Hbs1p are similar to the translation termination factors eRF1 and eRF3 (refs 3, 4), indicating that these proteins might function in recognizing the stalled ribosome and triggering endonucleolytic cleavage. No-go decay provides a mechanism for clearing the cell of stalled translation elongation complexes, which could occur as a result of damaged mRNAs or ribosomes, or as a mechanism of post-transcriptional control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available