4.5 Article

The SIRC model and influenza A

Journal

MATHEMATICAL BIOSCIENCES
Volume 200, Issue 2, Pages 152-169

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mbs.2005.12.029

Keywords

SIR and SIRS models; epidemics; cross-immunity and boosting; bifurcation analysis; multi-stability and fractal basins; chaos

Ask authors/readers for more resources

We develop a simple ordinary differential equation model to study the epidemiological consequences of the drift mechanism for influenza A viruses. Improving over the classical SIR approach, we introduce a fourth class (C) for the cross-immune individuals in the population, i.e., those that recovered after being infected by different strains of the same viral subtype in the past years. The SIRC model predicts that the prevalence of a virus is maximum for an intermediate value of R-0, the basic reproduction number. Via a bifurcation analysis of the model, we discuss the effect of seasonality on the epidemiological regimes. For realistic parameter values, the model exhibits a rich variety of behaviors, including chaos and multi-stable periodic outbreaks. Comparison with empirical evidence shows that the simulated regimes are qualitatively and quantitatively consistent with reality, both for tropical and temperate countries. We find that the basins of attraction of coexisting cycles can be fractal sets, thus predictability can in some cases become problematic even theoretically. In accordance with previous studies, we find that increasing cross-immunity tends to complicate the dynamics of the system. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available