4.7 Article

Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: Immunotherapeutic implications

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 207, Issue 1, Pages 58-66

Publisher

WILEY
DOI: 10.1002/jcp.20540

Keywords

-

Ask authors/readers for more resources

Emerging in vitro evidence points to an immunomodularity activity of DNA hypomethylating drugs in human malignancies. We investigated the potential of 5-aza-2'-deoxycytidine (5-AZA-CdR) to modulate the expression of cancer testis antigens (CTA) and of HLA class I antigens by melanoma xenografts, and the resulting modifications in immunogenicity of neoplastic cells. Three primary Cultures of melanoma cells, selected for immune phenotype and growth rate, were grafted into BALB/c nu/nu mice that were injected intraperitoneally with different dose- and time-schedules of 5-AZA-CdR. Molecular analyses demonstrated a de novo long-lasting expression of the CTA MAGE-1, -2,-3,-4, -10, GAGE 1-6, NY-ESO-1, and the upregulation of MAGE-1, MAGE-3, and NY-ESO-1 levels in melanoma xenografts from 5-AZA-CdR-treated mice. Serological and biochemical analyses identified a de novo expression of NY-ESO-1 protein and a concomitant and persistent upregulation of HLA class I antigens and of HLA-A1 and -A2 alleles. Immunization of BALB/c mice with 5-AZA-CdR-treated melanoma cells generated high titer circulating anti-NY-ESO-1 antibodies. Altogether, the data obtained identify an immunomodulatory activity of 5-AZA-CdR in vivo and strongly suggest for its clinical use to design novel strategies of CTA-based chemo-immunotherapy for melanoma patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available