4.4 Article

Chromosome structural changes in diploid and tetraploid A genomes of Gossypium

Journal

GENOME
Volume 49, Issue 4, Pages 336-345

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/G05-116

Keywords

comparative mapping; polyploidy; genome evolution; inversions; translocations; RFLP

Ask authors/readers for more resources

The genus Gossypium, which comprises a divergent group of diploid species and several recently formed allotetraploids, offers an excellent opportunity to study polyploid genome evolution. In this study, chromosome structural variation among the A, At, and D genomes of Gossypium was evaluated by comparative genetic linkage mapping. We constructed a fully resolved RFLP linkage map for the diploid A genome consisting of 275 loci using an F-2 interspecific Gossypium arboreum x Gossypium herbaceum family. The 13 chromosomes of the A genome are represented by 12 large linkage groups in our map, reflecting an expected interchromosomal translocation between G. arboreum and G. herbaceum. The A-genome chromosomes are largely collinear with the D genomes, save for a few small inversions. Although the 2 diploid mapping parents represent the closest living relatives of the allotetraploid A(t)-genome progenitor, 2 translocations and 7 inversions were observed between the A and At genomes. The recombination rates are similar between the 2 diploid genomes; however, the At genome shows a 93% increase in recombination relative to its diploid progenitors. Elevated recombination in the D-t genome was reported previously. These data on the At genome thus indicate that elevated recombination was a general property of allotetraploidy in cotton.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available