4.6 Article

Effects of neutrino-driven kicks on the supernova explosion mechanism

Journal

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volume 163, Issue 2, Pages 335-343

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/500933

Keywords

supernovae : general

Ask authors/readers for more resources

We show that neutrino-driven pulsar kicks can increase the energy of the supernova shock. The observed large velocities of pulsars are believed to originate in the supernova explosion, either from asymmetries in the ejecta or from an anisotropic emission of neutrinos ( or other light particles) from the cooling neutron star. In this paper we assume the velocities are caused by anisotropic neutrino emission and study the effects of these neutrino-driven kicks on the supernova explosion. We find that if the collapsed star is marginally unable to produce an explosion, the neutrino-driven mechanisms can drive the convection to make a successful explosion. The resultant explosion is asymmetric, with the strongest ejecta motion roughly in the direction of the neutron star kick. This is in sharp contrast with the ejecta-driven mechanisms, which predict the motion of the ejecta in the opposite direction. This difference can be used to distinguish between the two mechanisms based on the observations of the supernova remnants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available