4.5 Article

Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results

Journal

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
Volume 44, Issue 4, Pages 280-289

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11517-006-0040-6

Keywords

numerical simulation; animal model; tissue differentiation; fracture healing

Ask authors/readers for more resources

The combined use of experimental and mathematical models can lead to a better understanding of fracture healing. In this study, a mathematical model, which was originally established by Bailon-Plaza and van der Meulen (J Theor Biol 212: 191-209, 2001), was applied to an experimental model of a semi-stabilized murine tibial fracture. The mathematical model was implemented in a custom finite volumes code, specialized in dealing with the model's requirements of mass conservation and non-negativity of the variables. A qualitative agreement between the experimentally measured and numerically simulated evolution in the cartilage and bone content was observed. Additionally, an extensive parametric study was conducted to assess the influence of the model parameters on the simulation outcome. Finally, a case of pathological fracture healing and its treatment by administration of growth factors was modeled to demonstrate the potential therapeutic value of this mathematical model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available