4.8 Article

Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential

Journal

NATURE BIOTECHNOLOGY
Volume 24, Issue 4, Pages 439-446

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt1194

Keywords

-

Ask authors/readers for more resources

Voltage-gated ion channels regulate many physiological functions and are targets for a number of drugs. Patch-clamp electrophysiology is the standard method for measuring channel activity because it fulfils the requirements for voltage control, repetitive stimulation and high temporal resolution, but it is laborious and costly. Here we report an electro-optical technology and automated instrument, called the electrical stimulation voltage ion probe reader (E-VIPR), that measures the activity of voltage-gated ion channels using extracellular electrical field stimulation and voltage-sensitive fluorescent probes. We demonstrate that E-VIPR can sensitively detect drug potency and mechanism of block on the neuronal human type III voltage-gated sodium channel expressed in human embryonic kidney cells. Results are compared with voltage-clamp and show that E-VIPR provides sensitive and information-rich compound blocking activity. Furthermore, we screened similar to 400 drugs and observed sodium channel-blocking activity for similar to 25% of them, including the antidepressants sertraline (Zoloft) and paroxetine (Paxil).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available