4.7 Article

Cytoreductive Surgery and Intraoperative Administration of Paclitaxel-loaded Expansile Nanoparticles Delay Tumor Recurrence in Ovarian Carcinoma

Journal

ANNALS OF SURGICAL ONCOLOGY
Volume 20, Issue 5, Pages 1684-1693

Publisher

SPRINGER
DOI: 10.1245/s10434-012-2696-5

Keywords

-

Funding

  1. Center for Integration of Medicine and Innovative Technology, the Cross-Disciplinary Training in Nanotechnology for Cancer, NIH [R25 CA153955]
  2. NSF [DMR-1006601]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1006601] Funding Source: National Science Foundation

Ask authors/readers for more resources

Locoregional recurrence significantly impacts survival and quality of life in patients with ovarian carcinoma. We hypothesize that local administration of paclitaxel-loaded expansile nanoparticles (pax-eNP) at the time of cytoreductive surgery decreases local tumor recurrence. In vitro cytotoxicity of pax-eNP was assessed against both the OVCAR-3 human ovarian cancer cell line and tumor cells isolated from a malignant pleural effusion from a patient with multidrug-resistant ovarian cancer. A murine xenogenic model involving surgical cytoreduction of established OVCAR-3 intra-abdominal tumor was used to evaluate in vivo efficacy of intraoperative intraperitoneal (IP) injection of 10 mg/kg of paclitaxel either as pax-eNP or paclitaxel in Cremophor EL/ethanol solution (pax-C/E) versus empty eNP controls. Cytoreductive surgery and intraoperative treatment were performed 4 weeks after established tumor. All animals were sacrificed when empty eNP controls displayed extensive evidence of disease progression. Labeled-eNP entered tumor cells in vitro within 4 h and specifically accumulated at sites of tumor in vivo. Pax-eNP exhibited dose-dependent cytotoxicity in both OVCAR-3 and patient tumor cells isolated from a malignant pleural effusion and effectively prevented tumor recurrence following debulking (p = 0.003 vs. empty eNP). Furthermore, pax-eNP-treated animals did not develop severe recurrent carcinomatosis compared with 43 % of the pax-C/E-treated cohort, suggesting that single-dose intracavitary pax-eNP is more effective than an equivalent dose of pax-C/E. Expansile nanoparticles readily enter human ovarian tumor cells and localize to sites of tumor in vivo with pax-eNP cytotoxicity resulting in superior inhibition of locoregional tumor recurrence following cytoreductive surgery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available