4.6 Article

Short-pulse photoassociation in rubidium below the D1 line -: art. no. 043409

Journal

PHYSICAL REVIEW A
Volume 73, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.73.043409

Keywords

-

Ask authors/readers for more resources

Photoassociation of two ultracold rubidium atoms and the subsequent formation of stable molecules in the singlet ground and lowest triplet states is investigated theoretically. The method employs laser pulses inducing transitions via excited states correlated to the 5S+5P(1/2) asymptote. Weakly bound molecules in the singlet ground or lowest triplet state can be created by a single pulse while the formation of more deeply bound molecules requires a two-color pump-dump scenario. More deeply bound molecules in the singlet ground or lowest triplet state can be produced only if efficient mechanisms for both pump and dump steps exist. While long-range 1/R-3 potentials allow for efficient photoassociation, stabilization is facilitated by the resonant spin-orbit coupling of the 0(u)(+) states. Molecules in the singlet ground state bound by a few wave numbers can thus be formed. This provides a promising first step toward ground-state molecules which are ultracold in both translational and vibrational degrees of freedom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available