4.5 Article

Comparison of in vitro and in vivo estrogenic activity of UV filters in fish

Journal

TOXICOLOGICAL SCIENCES
Volume 90, Issue 2, Pages 349-361

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfj082

Keywords

UV filters; Pimephales promelas; vitellogenin; in vitro-in vivo comparison; fish estrogen receptor alpha; human estrogen receptor alpha

Categories

Ask authors/readers for more resources

In this work, we evaluate whether in vitro systems are good predictors for in vivo estrogenic activity in fish. We focus on UV filters being used in sunscreens and in UV stabilization of materials. First, we determined the estrogenic activity of 23 UV filters and one UV filter metabolite employing a recombinant yeast carrying the estrogen receptor of rainbow trout (rtER alpha) and made comparisons with yeast carrying the human hER alpha for receptor specificity. Benzophenone-1 (BP1), benzophenone-2 (BP2), 4,4-dihydroxybenzophenone, 4-hydroxybenzophenone, 2,4,4-trihydroxy-benzophenone, and phenylsalicylate showed full dose-response curves with maximal responses of 81-115%, whereas 3-benzylidene camphor (3BC), octylsalicylate, benzylsalicylate, benzophenone-3, and benzophenone-4 displayed lower maximal responses of 15-74%. Whereas the activity of 17 beta-estradiol was lower in the rtER alpha than the hER alpha assay, the activities of UV filters were similar or relatively higher in rtER alpha, indicating different relative binding activities of both ER. Subsequently, we analyzed whether the in vitro estrogenicity of eight UV filters is also displayed in vivo in fathead minnows by the induction potential of vitellogenin after 14 days of aqueous exposure. Of the three active compounds in vivo, 3BC induced vitellogenin at lower concentrations (435 mu g/l) than BP1 (4919 mu g/l) and BP2 (8783 mu g/l). The study shows, for the first time, estrogenic activities of UV filters in fish both in vitro and in vivo. Thus we propose that receptor-based assays should be used for in vitro screening prior to in vivo testing, leading to environmental risk assessments based on combined, complementary, and appropriate species-related assays for hormonal activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available