4.8 Article

Emission of ammonia from indoor concrete wall and assessment of human exposure

Journal

ENVIRONMENT INTERNATIONAL
Volume 32, Issue 3, Pages 303-311

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2005.06.002

Keywords

ammonia; concrete; emission; chamber; exposure; potential dose

Ask authors/readers for more resources

Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, hunts, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health fisk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same conditions. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available