4.6 Article

Microelectrode array for chronic deep-brain micro stimulation and recording

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 53, Issue 4, Pages 726-737

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2006.870215

Keywords

cats; chronic implant; deep brain stimulation; microstimulation; safety of electrical stimulation; subthalamic nucleus

Funding

  1. NINDS NIH HHS [NS40860-02] Funding Source: Medline

Ask authors/readers for more resources

We have developed an array of microelectrodes that is suitable for long-term implantation into the subthalamic nucleus (STN) or the globus pallidus and is able to record from single neurons, as well as deliver localized microstimulation. This device can be used to investigate the mechanisms by which deep brain stimulation can ameliorate the symptoms of Parkinson's disease and other movement disorders, and also may be the basis for a new clinical tool for the treatment of Parkinson's disease, by capitalizing on the high spatial specificity of intranuclear microstimulation. The array includes 16 activated iridium microelectrodes, 5-6 mm in length, within a cluster approximately 1.8 mm in diameter. We have fabricated the array using materials carrying the USP Category VI classification, and we have developed an apparatus and a procedure for implanting the microelectrode arrays into the deep brain. Ten arrays have been implanted into the STN of domestic cats, and one into the internal segment of the globus pallidus, for 140-415 days. During that time, we were able to record action potentials from individual neurons, on 4 to 8 of the 16 channels. The microelectrode' active surface areas ranged from 500 to 2000 mu m(2). Controlled-current pulses, 26.5 mu A in amplitude and 150 mu s/phase in duration (4 nC/phase) were used to excite neurons in the cat's STN. In addition to direct activation, the stimulus modulated the neuronal activity over a distance of at least 1.2 mm from the site of stimulation. These parameters did not induce histologically detectable changes around the tip sites after 35 hours of stimulation at 100 Hz (7 hours of stimulation per day, on 5 successive days), if the electrode' active surface area was 1000 mu m(2) or greater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available