4.7 Review

Genomics of hybrid poplar (Populus trichocarpa x deltoides) interacting with forest tent caterpillars (Malacosoma disstria):: normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar

Journal

MOLECULAR ECOLOGY
Volume 15, Issue 5, Pages 1275-1297

Publisher

WILEY
DOI: 10.1111/j.1365-294X.2006.02824.x

Keywords

forestry; herbivory; plant-insect interactions; transcriptome; tree genomics

Ask authors/readers for more resources

As part of a genomics strategy to characterize inducible defences against insect herbivory in poplar, we developed a comprehensive suite of functional genomics resources including cDNA libraries, expressed sequence tags (ESTs) and a cDNA microarray platform. These resources are designed to complement the existing poplar genome sequence and poplar (Populus spp.) ESTs by focusing on herbivore- and elicitor-treated tissues and incorporating normalization methods to capture rare transcripts. From a set of 15 standard, normalized or full-length cDNA libraries, we generated 139 007 3'- or 5'-end sequenced ESTs, representing more than one-third of the c. 385 000 publicly available Populus ESTs. Clustering and assembly of 107 519 3'-end ESTs resulted in 14 451 contigs and 20 560 singletons, altogether representing 35 011 putative unique transcripts, or potentially more than three-quarters of the predicted c. 45 000 genes in the poplar genome. Using this EST resource, we developed a cDNA microarray containing 15 496 unique genes, which was utilized to monitor gene expression in poplar leaves in response to herbivory by forest tent caterpillars (Malacosoma disstria). After 24 h of feeding, 1191 genes were classified as up-regulated, compared to only 537 down-regulated. Functional classification of this induced gene set revealed genes with roles in plant defence (e.g. endochitinases, Kunitz protease inhibitors), octadecanoid and ethylene signalling (e.g. lipoxygenase, allene oxide synthase, 1-aminocyclopropane-1-carboxylate oxidase), transport (e.g. ABC proteins, calreticulin), secondary metabolism [e.g. polyphenol oxidase, isoflavone reductase, (-)-germacrene D synthase] and transcriptional regulation [e.g. leucine-rich repeat transmembrane kinase, several transcription factor classes (zinc finger C3H type, AP2/EREBP, WRKY, bHLH)]. This study provides the first genome-scale approach to characterize insect-induced defences in a woody perennial providing a solid platform for functional investigation of plant-insect interactions in poplar.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available