4.5 Article

Rapamycin pre-treatment protects against apoptosis

Journal

HUMAN MOLECULAR GENETICS
Volume 15, Issue 7, Pages 1209-1216

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddl036

Keywords

-

Funding

  1. Medical Research Council [G0000872] Funding Source: researchfish
  2. MRC [G0000872] Funding Source: UKRI
  3. Medical Research Council [G0000872] Funding Source: Medline
  4. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

Macroautophagy (generally referred to as autophagy) mediates the bulk degradation of cytoplasmic contents, including proteins and organelles, in lysosomes. Rapamycin, a lipophilic, macrolide antibiotic, induces autophagy by inactivating the protein mammalian target of rapamycin (mTOR). We previously showed that rapamycin protects against mutant huntingtin-induced neurodegeneration in cell, fly and mouse models of Huntington's disease [Ravikumar, B., Duden, R. and Rubinsztein, D.C. (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet., 11, 1107-1117, Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J. et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet., 36, 585-595]. This protective effect of rapamycin was attributed to enhanced clearance of the mutant protein via autophagy [Ravikumar, B., Duden, R. and Rubinsztein, D.C. (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet., 11, 1107-1117, Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J. et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet., 36, 585-595]. Here, we show that rapamycin may have additional cytoprotective effects-it protects cells against a range of subsequent pro-apoptotic insults and reduces paraquat toxicity in Drosophila. This protection can be accounted for by enhanced clearance of mitochondria by autophagy, thereby reducing cytosolic cytochrome c release and downstream caspase activation after pro-apoptotic insults. Thus, rapamycin (pro-autophagic) treatment may be useful in certain disease conditions (including various neurodegenerative diseases) where a slow but increased rate of apoptosis is evident, even if they are not associated with overt aggregate formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available