4.7 Article

Improving Cutaneous Scar Formation by Controlling the Mechanical Environment Large Animal and Phase I Studies

Journal

ANNALS OF SURGERY
Volume 254, Issue 2, Pages 217-225

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/SLA.0b013e318220b159

Keywords

-

Categories

Funding

  1. Wallace H. Coulter Translational Partners Grant
  2. United States Armed Forces Institute of Regenerative Medicine grant (DOD) [W81XWA0-08-2-0032]
  3. Hagey Family Endowed Fund in Stem Cell Research and Regenerative Medicine
  4. Oak Foundation

Ask authors/readers for more resources

Objective: To test the hypothesis that the mechanical environment of cutaneous wounds can control scar formation. Background: Mechanical forces have been recognized to modulate myriad biologic processes, but the role of physical force in scar formation remains unclear. Furthermore, the therapeutic benefits of offloading cutaneous wounds with a device have not been rigorously tested. Methods: A mechanomodulating polymer device was utilized to manipulate the mechanical environment of closed cutaneous wounds in red Duroc swine. After 8 weeks, wounds subjected to different mechanical stress states underwent immunohistochemical analysis for fibrotic markers. In a phase I clinical study, 9 human patients undergoing elective abdominal surgery were treated postoperatively with a stress-shielding polymer on one side whereas the other side was treated as standard of care. Professional photographs were taken between 8 and 12 months postsurgery and evaluated using a visual analog scale by lay and professional panels. This study is registered with ClinicalTrials.gov, number NCT00766727. Results: Stress shielding of swine incisions reduced histologic scar area by 6- and 9-fold compared to control and elevated stress states, respectively (P < 0.01 for both) and dramatically decreased the histologic expression of profibrotic markers. Closure of high-tension wounds induced human-like scar formation in the red Duroc, a phenotype effectively mitigated with stress shielding of wounds. In the study on humans, stress shielding of abdominal incisions significantly improved scar appearance (P = 0.004) compared with within-patient controls. Conclusions: These results indicate that mechanical manipulation of the wound environment with a dynamic stress-shielding polymer device can significantly reduce scar formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available