4.7 Article

H2O2 injury in β thalassemic erythrocytes:: Protective role of catalase and the prooxidant effects of GSH

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 40, Issue 7, Pages 1264-1272

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2005.11.017

Keywords

free radical

Ask authors/readers for more resources

Redox-mediated injury is an important pathway in the destruction of beta thalassemic red blood cells (RBC). Because of the autoxidation of the unstable hemoglobin chains and subsequent release of globin free heme and iron, significant amounts of superoxide (02) and, more importantly, hydrogen peroxide (H2O2) are generated intracellularly. Hence, catabolism of H2O2 is crucial in preventing cellular injury. Removal of H2O2 is mediated via two primary pathways: GSH-dependent glutathione peroxidase or catalase. Importantly, both pathways are ultimately dependent on NADPH. In the absence of any exogenous oxidants, model thalassemic RBC demonstrated significantly decreased GSH levels (P < 0.001 at 20 h). Perhaps of greater pathophysiotogic importance, however, was the finding that the model thalassemic RBC exhibited significantly (P < 0.001) decreased catalase activity. Following 20 b incubation at 37 degrees C only 61.5 +/- 2.9% of the initial catalase activity remained in the a-hemoglobin chain-loaded cells versus 104.6 +/- 4.5 and 108.2 +/- 3.2% in the control and control-resealed cells, respectively. The mechanism underlying the loss of both catatase activity and GSH appears to be the same in that both catabolic pathways require adequate NADPH levels. As shown in this study, model beta thalassemic cells are unable to maintain a normal (similar to 1.0) NADPH/NADP(total) ratio and, after 20 h, the model beta thalassemic cells have a significantly (P < 0.001) lower ratio (similar to 0.5) which is quite similar to a G6PD-deficient RBC. In support of these findings, direct inactivation of catalase gives rise to significantly increased oxidant damage. In contrast, GSH depletion is not closely associated with oxidant sensitivity. Indeed, the consumption of GSH noted in the thalassemic RBC may be via a prooxidant pathway as augmentation of cellular GSH levels actually enhances alpha-hemoglobin chain-mediated injury. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available