4.3 Article

Postsynaptic protein mobility in dendritic spines: Long-term regulation by synaptic NMDA receptor activation

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 31, Issue 4, Pages 702-712

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2006.01.010

Keywords

CaMKII; GluR1; NR1; PSD-95; FRAP; LTP; hippocampal

Categories

Funding

  1. NINDS NIH HHS [NS33184] Funding Source: Medline

Ask authors/readers for more resources

Reorganization of molecular components represents a cellular mechanism for synaptic plasticity. Dendritic spines, major sites for glutamatergic synapses, compartmentalize dynamic changes in molecular composition. Here, we use fluorescence recovery after photobleaching (FRAP) in cultured hippocampal neurons to show that spine proteins undergo continual exchange with extra-spine pools. Each spine component has a distinctive mobility: calcium/calmodulin activated protein kinase CaMKII alpha > GluR1 AMPA glutamate receptor > PSD-95 scaffolding protein > NR1 NMDA glutamate receptor. Stimulation of synaptic NMDA receptors by a protocol that induces chemical LTP resulted in a long-lasting reduction in the mobility of spine CaMKII alpha. and an increased mobile fraction but slower kinetics for spine GluR1. Stimulation also increased the resistance of postsynaptic CaMKII alpha. to detergent extraction. These results suggest long-lasting changes in affinity of protein-protein interactions and/or ongoing alterations in exo/endocytosis. Such lasting changes in protein mobility may contribute to maintaining alterations in synaptic efficacy. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available