4.7 Article

O-glycosylation of serum IgD in IgA nephropathy

Journal

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
Volume 17, Issue 4, Pages 1192-1199

Publisher

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2005101115

Keywords

-

Ask authors/readers for more resources

In IgA nephropathy (IgAN), serum IgA1 with abnormal O-glycosylation preferentially deposits in the glomerular mesangium. The control of O-glycosylation is poorly understood. Among Ig isotypes, only IgD, produced early in B cell development, and IgA1, produced by mature B cells, are O-glycosylated. For investigation of the stage of B cell maturation at which the defect seen in IgAN arises, the O-glycosylation of serum IgA1 and IgD was studied in IgAN and controls. Serum was obtained from 20 patients with IgAN and 20 control subjects. The O-glycosylation profiles of native and desialylated IgA1 and IgD were measured in an ELISA-type system using the lectins Helix aspersa and peanut agglutinin, which bind to alternative forms of O-glycan moieties. The lectin-binding patterns of the two immunoglobulins differed in all participants, with that of IgD suggesting that it is more heavily galactosylated than IgA1. Defective O-glycosylation of IgA1, probably taking the form of reduced galactosylation, was confirmed in IgAN in this study. This undergalactosylation was not shared by IgD; in contrast, IgD carried more galactosylated O-glycans in IgAN than controls. The contrasting lectin-binding patterns of IgA1 and IgD shows that Ig O-glycosylation is differentially controlled during B cell maturation. Compared with controls, O-glycosylation in IgAN is incomplete in IgA1 but more complete in IgD. These observations show that abnormal IgA1 O-glycosylation in IgAN is not due to an inherent defect in glycosylation mechanisms but arises only at a later stage in B cell development and may be secondary to aberrant immunoregulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available