4.8 Article

Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3

Journal

NATURE MATERIALS
Volume 5, Issue 4, Pages 312-320

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat1614

Keywords

-

Ask authors/readers for more resources

The great variability in the electrical properties of multinary oxide materials, ranging from insulating, through semiconducting to metallic behaviour, has given rise to the idea of modulating the electronic properties on a nanometre scale for high-density electronic memory devices. A particularly promising aspect seems to be the ability of perovskites to provide bistable switching of the conductance between non-metallic andmetallic behaviour by the application of an appropriate electric field. Here we demonstrate that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO3. The phenomenon is shown to originate from local modulations of the oxygen content and to be related to the self-doping capability of the early transition metal oxides. Our results show that extended defects, such as dislocations, can act as bistable nanowires and hold technological promise for terabit memory devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available