4.7 Article

NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats

Journal

HYPERTENSION
Volume 47, Issue 4, Pages 692-698

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.HYP.0000203161.02046.8d

Keywords

oxidative stress; hypertension, renal; renal disease; sodium; antioxidants

Funding

  1. NHLBI NIH HHS [HL-29587, HL-54998, HL-077263] Funding Source: Medline

Ask authors/readers for more resources

Dahl salt-sensitive ( SS) rats exhibit increased renal medullary oxidative stress and blood pressure salt-sensitivity compared with consomic, salt-resistant SS-13(BN) rats, despite highly similar genetic backgrounds. The present study examined potential sources of renal medullary superoxide in prehypertensive SS rats fed a 0.4% NaCl diet by assessing activity and protein levels of superoxide producing and scavenging enzymes. Superoxide production was nearly doubled in SS rats compared with SS-13(BN) rats as determined by urinary 8-isoprostane excretion and renal medullary oxy-ethidium microdialysate levels. Medullary superoxide production in tissue homogenates was greater in SS rats, and the NADPH oxidase inhibitor diphenylene iodonium preferentially reduced SS levels to those found in SS-13(BN) rats. Dinitrophenol, a mitochondrial uncoupler, eliminated the remaining superoxide production in both strains, whereas inhibition of xanthine oxidase, NO synthase, and cycloxygenase had no effect. L-arginine, NO synthase, superoxide dismutase, catalase, and glutathione peroxidase activities between SS and SS-13(BN) rats did not differ. Chronic blood pressure responses to a 4% NaCl diet were then determined in the presence or absence of the NADPH oxidase inhibitor apocynin ( 3.5 mu g/kg per minute), chronically delivered directly into the renal medulla. Apocynin infusion reduced renal medullary interstitial superoxide from 1059 +/- 130 to 422 +/- 80 ( oxyethidium fluorescence units) and mean arterial pressure from 175 +/- 4 to 157 +/- 6 mm Hg in SS rats, whereas no effects on either were observed in the SS-13(BN). We conclude that excess renal medullary superoxide production in SS rats contributes to salt-induced hypertension, and NADPH oxidase is the major source of the excess superoxide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available