4.5 Article

Protection against cisplatin-induced nephrotoxicity by a carbon monoxide- releasing molecule

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 290, Issue 4, Pages F789-F794

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00363.2005

Keywords

apoptosis; heme oxygenase-1

Funding

  1. Engineering and Physical Sciences Research Council [GR/S30924/01] Funding Source: researchfish

Ask authors/readers for more resources

Nephrotoxicity is one of the main side effects caused by cisplatin (CP), a widely used antineoplastic agent. Here, we examined the effect of a novel water-soluble carbon monoxide-releasing molecule (CORM-3) on CP-mediated cytotoxicity in renal epithelial cells and explored the potential therapeutic benefits of carbon monoxide in CP-induced nephrotoxicity in vivo. Exposure of LLC-PK1 cells to CP (50 mu M) caused significant apoptosis as evidenced by caspase-3 activation and an increased number of floating cells. Treatment with CORM-3 (1-50 mu M) resulted in a remarkable and concentration-dependent decrease in CP-induced caspase-3 activity and cell detachment. This effect involved activation of the cGMP pathway as 1H-oxadiazole [4, 3-a] quinoxaline-1-ore (ODQ), a guanylate cyclase inhibitor, completely abolished the protection elicited by CORM-3. Using a rat model of CP-induced renal failure, we found that treatment with CP (7.5 mg/kg) caused a significant elevation in plasma urea (6.6-fold) and creatinine (3.1-fold) levels, which was accompanied by severe morphological changes and marked apoptosis in tubules at the corticomedullary junction. A daily administration of CORM-3 ( 10 mg/kg ip), starting 1 day before CP treatment and continuing for 3 days thereafter, resulted in amelioration of renal function as shown by reduction of urea and creatinine levels to basal values, a decreased number of apoptotic tubular cells, and an improved histological profile. A negative control (iCORM-3) that is incapable of liberating CO failed to prevent renal dysfunction mediated by CP, indicating that CO is directly involved in renoprotection. Our data demonstrate that CORM-3 can be used as an effective therapeutic adjuvant in the treatment of CP-induced nephrotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available